skip to main content


Search for: All records

Creators/Authors contains: "Pellegrino, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding the formation of stellar clusters requires following the interplay between gas and newly formed stars accurately. We therefore couple the magnetohydrodynamics codeFLASHto theN-body codeph4and the stellar evolution codeSeBausing the Astrophysical Multipurpose Software Environment (AMUSE) to model stellar dynamics, evolution, and collisionalN-body dynamics and the formation of binary and higher-order multiple systems, while implementing stellar feedback in the form of radiation, stellar winds, and supernovae inFLASH. We here describe the algorithms used for each of these processes. We denote this integrated package Torch. We then use this novel numerical method to simulate the formation and early evolution of several examples of open clusters of ∼1000 stars formed from clouds with a mass range of 103Mto 105M. Analyzing the effects of stellar feedback on the gas and stars of the natal clusters, we find that in these examples, the stellar clusters are resilient to disruption, even in the presence of intense feedback. This can even slightly increase the amount of dense, Jeans unstable gas by sweeping up shells; thus, a stellar wind strong enough to trap its own H iiregion shows modest triggering of star formation. Our clusters are born moderately mass segregated, an effect enhanced by feedback, and retained after the ejection of their natal gas, in agreement with observations.

     
    more » « less